10 research outputs found

    ESTCube-1 nanosatelliidi alams usteemide ja tarkvara disain ja karakteriseerimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneElektrilise päikesepurje tehnoloogia võimaldaks kosmosesondidel navigeerida planeetidevahelises ruumis ilma kütuseta, kasutades vaid päikesetuult ja elektrienergiat. Küll aga on tehnoloogiliselt keerukas päikesepurje purjetraadi väljakerimine, mis eeldab kosmosesondi pöörlemapanekut. 2013. aasta 7. mail maalähedasele orbiidile läkitatud tudengisatelliit ESTCube-1 oli esimene satelliit elektrilise päikesepurje katsetusmooduliga. Satelliit seati edukalt vajaliku pöörlemiskiirusega pöörlema, kuid purje väljakerimine ebaõnnestus mehaanilise tõrke tõttu katsetusmooduli motoriseeritud purjepoolis. ESTCube-1 pöörlemapanekut ja päikesepurje katsetusmooduli juhtimist võimaldasid satelliidi pardaarvuti ja seda ümbritsevad liidesed, mille arendamise ja valideerimise tulemustele keskendub antud väitekiri. Pardaarvuti kogus mõõdiseid satelliidi asendi anduritelt, juhtis magnetmähiseid ning lülitas missioonilasti purjepooli mootorit, purjepooli kõrgepinge toiteplokki ja elektronkiirgureid. Lisaks vahendas pardaarvuti pilte pardakaamerast ning salvestas mõõtmistulemusi satelliidi alamsüsteemidelt et need hiljem maajaamale edastada. Satelliidi kaheaastase eluea jooksul ei täheldatud missioonikriitilisi tõrkeid pardaarvuti ega selle liideste töös. ESTCube-1 missioon aitas edukalt tõsta elektrilise päikesepurje tehnoloogia komponentide valmidusastet tulevasteks missioonideks.Electrical solar wind sail (E-sail) technology would enable propellantless interplanetary navigation of space probes, using just solar wind and electricity. One of the main challenges of the technology is E-sail tether deployment, for which the space probe would be spun to a high angular rate. Launched on May 7th, 2013, the Estonian student satellite ESTCube-1 was the first spacecraft with an E-sail experiment payload. While the satellite was successfully spun to the spin rate necessary for the experiment, the motorised reel technology used on the payload proved immature for tether deployment. ESTCube-1 spin-up and payload control were enabled by the spacecraft on-board computer. This thesis is focused on the results of the development and in-orbit validation of the on-board computer and its interfaces to other related systems on the satellite. The on-board computer collected measurements from spacecraft attitude sensors, controlled its magnetic torquers, mediated camera images and stored telemetry from various subsystems for later transmission. The on-board computer also toggled the tether reel motor, electron emitters and controlled the high voltage supply for the E-sail tether. Throughout the two-year lifetime of the spacecraft, no mission-critical issues were encountered in the operation of the on-board computer or its interfaces. The ESTCube-1 mission successfully improved the technological readiness of E-sail components for future missions.https://www.ester.ee/record=b524281

    ESTCube-1 käsu- ja andmehaldussüsteemi tarkvara

    Get PDF
    Antud töö raames sai loetletud ESTCube-1 Käsu- ja Andmehaldussüsteemile ehk pardaarvutile esitatud nõuded. Vastavalt nõuetele sai arendatud pardaarvuti tark- vara, mis sisaldab FreeRTOS ajureid andmesiinide ja pardaseadmete jaoks, vea- haldust, käsuhaldurit, moodulit telemeetria salvestamiseks ning failisüsteeme jadali- idesega ferroelektriliste muutmälude ja välkmälude jaoks. Mitmed arendatud tarkvaramoodulitest on leidnud kasutust ka ESTCube-1 kaamerasüsteemi pardal. Arendatud tarkvaral on sooritatud teste kahel satelliidi maapealsel mudelil ning orbiidil lendaval satelliidil. Mõningate eranditega on orbiidil täheldatud prob- leemid edukalt reprodutseeritud maapealsetel mudelitel, ning uus parandustega versioon tarkvarast on edukalt orbiidil olevale satelliidile laetud. Orbiidil on pardaarvutil edukalt katsetatud satelliidi orientatsiooni määramise ja juhtimise tarkvara. Andurite mõõdiste eeltöötluse algoritmid on orbiidil testi- tud ning satelliidi orientatsiooni määramise algoritmi väljundit on võrreldud par- dakaamera piltidega. Kasutades satelliidi osutamise algoritmi koos pardaarvuti skriptidega, on täidetud ka osa ESTCube-1 missioonist - pildistada Eestit kos- mosest. Seni on ESTCube-1 olnud orbiidil veidi üle aasta ning kõik satelliidi süsteemid on endiselt töökorras

    Coulomb drag propulsion experiments of ESTCube-2 and FORESAIL-1

    Get PDF
    This paper presents two technology experiments – the plasma brake for deorbiting and the electric solar wind sail for interplanetary propulsion – on board the ESTCube-2 and FORESAIL-1 satellites. Since both technologies employ the Coulomb interaction between a charged tether and a plasma flow, they are commonly referred to as Coulomb drag propulsion. The plasma brake operates in the ionosphere, where a negatively charged tether deorbits a satellite. The electric sail operates in the solar wind, where a positively charged tether propels a spacecraft, while an electron emitter removes trapped electrons. Both satellites will be launched in low Earth orbit carrying nearly identical Coulomb drag propulsion experiments, with the main difference being that ESTCube-2 has an electron emitter and it can operate in the positive mode. While solar-wind sailing is not possible in low Earth orbit, ESTCube-2 will space-qualify the components necessary for future electric sail experiments in its authentic environment. The plasma brake can be used on a range of satellite mass classes and orbits. On nanosatellites, the plasma brake is an enabler of deorbiting – a 300-m-long tether fits within half a cubesat unit, and, when charged with -1 kV, can deorbit a 4.5-kg satellite from between a 700- and 500-km altitude in approximately 9–13 months. This paper provides the design and detailed analysis of low-Earth-orbit experiments, as well as the overall mission design of ESTCube-2 and FORESAIL-1.Peer reviewe

    Coulomb drag propulsion experiments of ESTCube-2 and FORESAIL-1

    Get PDF
    This paper presents two technology experiments – the plasma brake for deorbiting and the electric solar wind sail for interplanetary propulsion – on board the ESTCube-2 and FORESAIL-1 satellites. Since both technologies employ the Coulomb interaction between a charged tether and a plasma flow, they are commonly referred to as Coulomb drag propulsion. The plasma brake operates in the ionosphere, where a negatively charged tether deorbits a satellite. The electric sail operates in the solar wind, where a positively charged tether propels a spacecraft, while an electron emitter removes trapped electrons. Both satellites will be launched in low Earth orbit carrying nearly identical Coulomb drag propulsion experiments, with the main difference being that ESTCube-2 has an electron emitter and it can operate in the positive mode. While solar-wind sailing is not possible in low Earth orbit, ESTCube-2 will space-qualify the components necessary for future electric sail experiments in its authentic environment. The plasma brake can be used on a range of satellite mass classes and orbits. On nanosatellites, the plasma brake is an enabler of deorbiting – a 300-m-long tether fits within half a cubesat unit, and, when charged with - 1 kV, can deorbit a 4.5-kg satellite from between a 700- and 500-km altitude in approximately 9–13 months. This paper provides the design and detailed analysis of low-Earth-orbit experiments, as well as the overall mission design of ESTCube-2 and FORESAIL-1.</p

    Feature database of Estonian agricultural parcels for crop classification (years 2018-2019).

    No full text
    Feature database of Estonian agricultural parcels for crop classification (years 2018-2019). Sentinel-1 and -2 and additional geospatial feature set time series about Estonian agricultural parcels 2018-2019. The time series was used for neural networks model for crop classification purposed, but could in principle be used also with other models and other purposes

    Separability of mowing and ploughing events on short temporal baseline sentinel-1 coherence time series

    Get PDF
    Short temporal baseline regular Synthetic Aperture Radar (SAR) interferometry is a tool well suited for wide area monitoring of agricultural activities, urgently needed in European Union Common Agricultural Policy (CAP) enforcement. In this study, we demonstrate and describe in detail, how mowing and ploughing events can be identified from Sentinel-1 6-day interferometric coherence time series. The study is based on a large dataset of 386 dual polarimetric Sentinel-1 VV/VH SAR and 351 Sentinel-2 optical images, and nearly 2000 documented mowing and ploughing events on more than 1000 parcels (average 10.6 ha, smallest 0.6 ha, largest 108.5 ha). Statistical analysis revealed that mowing and ploughing cause coherence to increase when compared to values before an event. In the case of mowing, the coherence increased from 0.18 to 0.35, while Sentinel-2 NDVI (indicating the amount of green chlorophyll containing biomass) at the same time decreased from 0.75 to 0.5. For mowing, there was virtually no difference between the polarisations. After ploughing, VV-coherence grew up to 0.65 and VH-coherence to 0.45, while NDVI was around 0.2 at the same time. Before ploughing, both coherence and NDVI values were very variable, determined by the agricultural management practices of the parcel. Results presented here can be used for planning further studies and developing mowing and ploughing detection algorithms based on Sentinel-1 data. Besides CAP enforcement, the results are also useful for food security and land use change detection applications.Peer reviewe

    Interplanetary Student Nanospacecraft: Development of the LEO Demonstrator ESTCube-2

    No full text
    Nanosatellites have established their importance in low-Earth orbit (LEO), and it is common for student teams to build them for educational and technology demonstration purposes. The next challenge is the technology maturity for deep-space missions. The LEO serves as a relevant environment for maturing the spacecraft design. Here we present the ESTCube-2 mission, which will be launched onboard VEGA-C VV23. The satellite was developed as a technology demonstrator for the future deep-space mission by the Estonian Student Satellite Program. The ultimate vision of the program is to use the electric solar wind sail (E-sail) technology in an interplanetary environment to traverse the solar system using lightweight propulsion means. Additional experiments were added to demonstrate all necessary technologies to use the E-sail payload onboard ESTCube-3, the next nanospacecraft targeting the lunar orbit. The E-sail demonstration requires a high-angular velocity spin-up to deploy a tether, resulting in a need for a custom satellite bus. In addition, the satellite includes deep-space prototypes: deployable structures; compact avionics stack electronics (including side panels); star tracker; reaction wheels; and cold–gas propulsion. During the development, two additional payloads were added to the design of ESTCube-2, one for Earth observation of the Normalized Difference Vegetation Index and the other for corrosion testing in the space of thin-film materials. The ESTCube-2 satellite has been finished and tested in time for delivery to the launcher. Eventually, the project proved highly complex, making the team lower its ambitions and optimize the development of electronics, software, and mechanical structure. The ESTCube-2 team dealt with budgetary constraints, student management problems during a pandemic, and issues in the documentation approach. Beyond management techniques, the project required leadership that kept the team aware of the big picture and willing to finish a complex satellite platform. The paper discusses the ESTCube-2 design and its development, highlights the team’s main technical, management, and leadership issues, and presents suggestions for nanosatellite and nanospacecraft developers
    corecore